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Spatial chaos and patterns of laser beams in plasmas are investigated in terms of a saturable nonlinear
Schrédinger equation, theoretically and numerically. The linear analysis shows that the homoclinic or-
bit crossings may exist in phase space, which is also verified in our numerical experiments. In particular,
current research illustrates that the spatial chaos and complicated patterns of light wave interacting with
plasmas arise from the high order saturable nonlinear effects. The complicated patterns are associated
with the stochastic partition of energy contained in Fourier modes. In addition, some physical

significance for our work has been discussed.

PACS number(s): 52.35.Mw, 47.10.+g, 05.45.+b, 52.40.Db

I. INTRODUCTION

In laser-plasma interaction, considering the Maxwell
equations and the motion equations of an electron, one
can obtain the wave equation for the light electric fields
(1,2],

zaE 2 n

2ikqyc E+c2VfE+wp0n—oE=0 , (1.1)
and the fluid equation of the electron density,
9’ Ze?
Flnn —cV2, n=V32+ WVEIEP , (1.2)

where ¢, =V (ZT,+T;)/m, is the acoustic velocity, c is
the light velocity, n =ny—6n, n, is the unperturbed elec-
tron density, k, is the laser wave number, w, is the plas-
ma frequency, and T,,T; and m,,m; represent the elec-
tron and ion temperature and mass, respectively.

In the static approximation, Eqgs. (1.1) and (1.2) are re-
duced to the nonlinear Schrédinger equation (NSE) [3-6]

2ik0c2%—f +c2VfE+m‘2,O(1—e—ﬁ1E|2)E=O ,
where B=e2/4mem,2,OTe( 1+T;/ZT,). Equation (1.3) ob-
viously describes the case where a light beam propagates
in a steady state, but varies in space. In other words, the
ponderomotive force completely dominates ion inertia,
and must be balanced by pressure forces instead.

For the dynamic model (1.3), the self-focusing, self-
trapped, and laser beam filamentations due to the pon-
deromotive force in plasmas were extensively studied.
Max [3] showed that the self-focusing becomes a periodic
oscillatory phenomenon, rather than a catastrophic
process due to the exponential nonlinearity. Lam,
Lippmann, and Tappert [4] illustrated that the self-
trapped beams are stable. Kaw, Schmidt, and Wilcox [5]

(1.3)
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showed that an electromagnetic wave interacting with a
plasma is subject to instabilities leading to filamentation.
Johnston [6] numerically discussed the fast and slow
filamentations in plasmas.

Considering many physical applications, here we
rewrite Eq. (1.3) as a more generally one-dimensional di-
mensionless form,

OE | 3'E | 1 —2g|E2
=+ —=+-—(1—e %IENHE=0,
"z T ax? 28( ¢ )

(1.4)
where g is the parameter. When g =0, Eq. (1.4) becomes
the well-known cubic NSE, which is integrable due to the
existence of the Lax pair. A class of periodic solutions
and solitons can be obtained by the inverse scattering
transform.

Although the self-focusing and filamentation phenome-
na have been extensively discussed, as we know, another
important dynamic behavior for Eq. (1.3) or Eq. (1.4) to
describe, the laser beam propagation (spatial chaos) has
not been studied in detail. Our main purpose here is to
investigate the spatial patterns of laser beams interacting
with plasmas. In addition, the integrable problem of Eq.
(1.4) is discussed. In Sec. II, we simply analyze the
periodic solution of Eq. (1.4) and give the linear discus-
sions. The spatial chaos and patterns are described in
Secs. III and IV, respectively, and some summaries and
discussions are given in the final section.

II. QUALITATIVE ANALYSES

A. Traveling-wave solution
For Eq. (1.4), we assume
E(x’z)=G(§)ei[(v/2)x—QZ] , (21)

where §=x —uvz. Inserting Eq. (2.1) into Eq. (1.4) and in-
tegrating once, we yield

2
46 | L v6)=mH,,

de (2.2)

1
2
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where Hj is the integration constant that represents the
pseudoenergy, and the pseudopotential V' (G) is

1 a?

2
22 2 G°, (2.3)

V(G)=—1r(e 20" —1)+
8g

where a?=v?/4—Q, which is plotted in Fig. 1. Equation
(2.2) can be considered as an energy integral of a classical
particle with unit mass. We know from the classical
mechanics that the particle motion is periodic if a parti-
cle lies in the potential well (H,<0), and the solution
corresponds to a periodic one. As H;=0, the solution
corresponds to a solitary, where the strength and the
characteristic width of the laser beams can be given when
we obtain such a solution [7]. However, the explicitly
analytical solitary has not been obtained as yet, which is
due to the complication of the potential function (2.3).

B. Linearized analysis

On the other hand, a simpler homogeneous solution
can be written as

E(z)=Eye"”, (2.4
where
) 12
=0, +|—I(1—2g)7"! )
E, , 2 W g) ] (2.5)

for 0=g < 1. We assume the initial state to be E;,. Now

let us analyze the developed behavior for such an initial
state. Defining

E(x,z2)=E(z)+8E (x,z) (2.6)

and linearizing Eq. (1.4) as done in Ref. [8], we easily ob-
tain

=4 (2.7)

and
I8E (x,2)| =c e #%cos(K X )+ cye ~ Hcos(K ) (2.8)

for  E,=v/(1/2g),(1—2g)"!

with 0=g<i,

V(G)

FIG. 1. The pseudopotential function (2.3).

where ¢; and ¢, are the small parameters,
A=[(1/2g)—1]l,(1—2g), and K,_,, represents the
maximum instability wave number. If we construct the
phase  space _as  (|E(x,z)|,d|E(x,z)|/dz), then
[V (1/2g)1,(1—2g)~", 0] corresponds to a saddle point
in phase space. Owing to the integrability of the cubic
NSE, on the other hand, the orbits that pass the saddle
point (1,0) must be the homoclinic orbits (HMO’s) [9].

III. SPATIAL CHAOS AND ITS DESCRIPTIONS

From steady-state analysis, we know the linear
developed behavior of the homogeneous solution. A fur-
ther discussion will be finished by using the numerical ex-
periments.

According to the results obtained in Sec. II B, on the
other hand, we take the initial condition as

E(x,0)=Ey+ee%o0s(K . X) , 3.1)

where € is a real parameter and
E0=\/(1/2g)ln(1—2g)'1. In numerical processes, the
periodic length of the system is taken as L =27/K_,,,
and the standard splitting-step spectral method [10] has
been improved in order to increase the accuracy, which
depends on the accuracy of conserved quantities being
preserved to 105,

In order to analyze the chaotic properties of the satur-
able NSE (1.4), we first discuss the behavior of the HMO
crossings. In Sec. II B, we show that (E(,0) [where
E0=V(1/2g)ln(1—2g)_l] corresponds to a saddle
point in phase space. Comparing Egs. (2.6) and (2.7) with
the initial condition (3.1), we easily determine that the
unstable manifolds for possessing the saddle point (E,,0)
correspond to 6=45° and 225°, and the stable manifolds
correspond to 6=135° and 315°.

As far as a finite dimensional dynamic system is con-
cerned, the stable and unstable orbits for the hyperbolic
fixed point would be smoothly joined to each other if the
unperturbed system were taken to be integrable. For a
Hamiltonian perturbation, the orbits generically intersect
transversely, leading to an infinite number of homoclinic
points and chaotic motion [11]. According to this idea,
we also deal with our continuum Hamiltonian system.
As g =0, the stable and unstable manifolds that possess
the saddle point (1,0) should be smoothly joined to each
other due to the integrability of the cubic NSE. Making
use of the results obtained in the linear stability analysis,
we choose the initial parameters as €=0.0001, 6=45°,
and consider two cases of g =0 and g =0.1, respectively.
From Fig. 2(a), we observe that the stable manifold W'
smoothly joins with the unstable manifold W*). The or-
bit that possesses the saddle point (1, 0) corresponds to
the homoclinic one. As g0, however, we find that the
stable and unstable manifolds in phase space do not
smoothly join together as shown in Fig. 2(b), which illus-
trates that the current system is near integrable. It is also
noted that there are not an infinite number of homoclinic
points in Fig. 2(b). In fact, our phase space
(|E(x,z)|,d|E(x,z)| /dz) is only the projection of a
high-dimensional space, where the information of phase
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for wave fields is not considered. Therefore, there may
exist some difference between our HMO crossings with
those in a finite-dimensional Hamiltonian system in
which the infinite homoclinic points appear.

To analyze the spatial chaos, we further discuss the
propagative behavior of wave fields. Here, we choose an
initial position that lies in the nearby saddle point (E,0),
that is, €=0.1, 6=45.225°. For g =0, the integrability
for the cubic NSE can be seen from our previous work
[8], where the amplitude of wave fields propagates period-
ically. The exactly periodic recurrent solution is also ex-
hibited in Fig. 3(a). For g=0.1, however, a completely
different dynamic behavior is shown in Fig. 3(b). We ob-
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FIG. 2. Stable (W'®) and unstable (W'*)) manifolds for the
hyperbolic fixed point [V/(1/2g)l,(1 —2¢)71,0], where the
point line is computed with z >0 and the solid line is computed
with z <0. (a) Integrable cubic NSE; the orbits smoothly join.
(b) Nonintegrable saturable NSE (1.4) with g=0.1.

FIG. 3. Envelope amplitude of Eq. (1.4), with €=0.1 and
6=45.225". (a) g=0. (b) g=0.1.

serve that the localized structures are still kept in the
propagative processes of wave fields. The presence of
these complicated patterns shows the coherence broken
down. To better analyze the propagative characteristic
of wave fields, we trace a fixed position in x space. As
shown in Fig. 4, the typically chaotic characteristic has
been described. As for wave fields, the amplitude,
|E(x,z)| experiences the stochastic oscillation at
sufficiently far distances [see Fig. 4(b)]. In particular, the
irregular HMO crossings as exhibited in Fig. 4(a) are very
clear. A continuous nonperiodic spectrum is described in
Fig. 4(c). From these figures, we believe that the wave
fields are stochastic propagation, which arises from the
Hamiltonian perturbation
— (1 Ligp— L || g2y L, 2l _
H=[ 7 E| » |E| gt 1 ldx.
(3.2)

To illustrate the route to spatial chaos, we fix parameters
6=45.225°, €e=0.1 and vary g. From Fig. 5, we find the
foundational frequency ;=0.2513 for g=0. When
g =0.0002, the wave field still seems to propagate with
periodic behavior, but some small peaks in the power
spectrum appear and the base frequencies are not unique-
ly defined (see Table I). When g=0.0008, in particular,
more peaks are produced (but still countable), although
the solution does not recur within the finite distance. In
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a sense, these solutions are called quasiperiodic solutions
[12]. To demonstrate this conclusion, we should discuss
the definition of a quasiperiodic solution. As a matter of
fact, a quasiperiodic solution is one that can be expressed
as a countable sum of periodic functions with the follow-
ing two properties: (i) it is linear independent; and (i) it
forms a finite integral base for the frequency. From Fig.
5 and Table I, we see that the countable frequencies do
exist. In special cases, we find that the phase-space tra-
jectory, the wave form of |E(x,z)|, and the spectrum of
the wave form are completely similar to those cases re-
ported in Ref. [12], in which the quasiperiodic solutions
of the Ver Pol equation are described. Of course, owing
to the impossibility of determining whether a measured
value is rational or irrational numerically, a spectrum
that appears to be quasiperiodic may actually be periodic
with an extremely long periodic solution (see Fig. 5 for
g=0.0002). On the other hand, with the increase of pa-
rameter g, the continuous power spectrum reveals the
chaotic behavior (see Fig. 5, in the case of g =0.01, and
Fig. 4). In addition, we also measure the maximum
Lyapunov exponent. It is seen from Fig. 6 that the max-
imum Lyapunov exponent is positive for the large parts
of parametric g. Therefore, the spatial chaos is the main
characteristic of the current Hamiltonian system.

Here, we simply illustrate the forming mechanism for
the appearance of our spatial chaos. From the stand-
point of nonlinear dynamics, the base frequency of the
cubic NSE is unique (@) for our parameter due to the in-
tegrability of the system. However, the nonintegrable
perturbation H,; (3.2) will make the frequency shift, that
is, w; =wy+ Aw;. When the parameter g is quite small,
there exists finite countable frequencies. With the in-
crease of g, the oscillatory overlapping of the modes
could occur [13], which leads to the formation of the sto-
chastic layer and the appearance of the continuous power
spectrum.

IV. COMPLICATED PATTERNS
AND THEIR CHARACTERISTICS

In Sec. III we have shown that nonintegrable perturba-
tion leads to the chaotic propagation of wave fields.
Also, the complicated patterns have been described in
Fig. 3(b), in which we observe the solitarylike structures
to be quite irregular. In fact, these irregular patterns are
associated with the partition of energy in Fourier modes.
For the cubic NSE, the energy in Fourier modes is homo-
geneous decay, which leads to the formation of coherent
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FIG. 4. (a) Phase trajectories illustrate the irregular HMO
crossings. (b) Propagation of the field amplitude. (c) Continu-
ous power spectrum shows the chaotic characteristic.

TABLE I. Frequencies corresponding to the high peaks, where p represents the nth high peak. Note
that the base frequency for g =0 equals 0.251 32, and is about 0.251 33 for g =0.0002. However, the
“base” frequency for g=0.0005 and 0.0008 is not unique, which illustrates that their solutions are

quasiperiodic.

g P 1 2 3 4 5

6 7 8 9 10

0.0 0.25132 0.502 65 0.75398 1.00530 1.25663 1.50792

1.75929 2.01061 2.26194 2.51327

0.0002 0.25133 0.502 65 0.769 69 1.00531 1.256 64 1.492256 1.743 584 1.994921 2.246238 2.497 566

0.0005 0.23562 0.48695 0.72256 0.98960 1.24092 1.476 55

1.71216 197921 2.21482 2.49756

0.0008 0.28274 0.64402 1.00531 1.20951 1.50796 1.85355 2.15199 2.22478 2.56039 2.70177




structures. For the saturable NSE (1.4), however, Fig. 7
shows that the partition of energy in Fourier modes is in-
homogeneous decay, which results in the localized struc-
tures becoming considerably irregular.

of the complicated patterns, we further investigate the
evolutive process of energy in Fourier modes. For Eq.
(1.

In Fourier space, it can be rewritten as
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FIG. 5. The periodic solution,
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chaotic solutions with €=0.1
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spectrum.
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FIG. 7. Energy contained in Fourier modes
with the differently propagative distance.

Here K, stands for the nth Fourier mode. The propaga-
tive processes of the amplitude for wave fields in Fourier
space, which also correspond to the evolutions of energy
in Fourier modes, i.e., Hy = |E X, |2, are shown in Fig. 8.
Obviously, the large part of the energy in the system lies
in the low Fourier modes. For g =0, the propagation of
energy in all modes is periodic [14], which is consistent
with the periodic recurrent solution [Fig. 3(a)]. The am-
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FIG. 8. Propagation of energy in the first four Fourier
modes.

plitude of the soliton structures is dominated by the total
energy of system, while the width and pattern of coherent
structures are associated with the energy partition in the
high modes. For g0, however, Fig. 8 shows that the
energy in the system, which is initially confined to the
master mode, would spread to many slaved harmonic
modes because of the nonlinear interaction, but would
not regroup into the original lowest mode. The irregular
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FIG. 9. The Fourier spectrum of energy (H, X, (w,)~w,).
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oscillation in the Fourier modes, in which the slaved
modes interact with the master one, leads to the forma-
tion of the complicated patterns. On the other hand, we
note from Fig. 9 that the power spectrum for energy in
various modes is not exhibited as a clearly chaotic noise
spectrum. In a sense, such a phenomenon illustrates the
existence of solitarylike structures, although the well-
formed structures are very irregular. In a word, the pat-
tern dynamics is associated with the propagation of ener-
gy deposited in all Fourier modes.

V. SUMMARIES AND DISCUSSIONS

From our theoretical analysis and numerical discus-
sions, we can summarize the main conclusions as follows.
(i) The periodic solution and solitary wave solution may
exist in our continuum Hamiltonian dynamic system, and
the higher order saturable nonlinear effects, compared
with those for the cubic term could make the amplitude
and width of the light wave change. (ii) The analytical
and numerical results show that nonintegrable Hamil-
tonian perturbation H; derives from the presence of
chaos, where the wave field evolutions are spatially
chaotic but the localized structures are still kept. (iii)
The formation of the complicated patterns is associated
with the stochastic partition of energy contained in
Fourier modes. (iv) The route from coherent structures
to complicated patterns is a quasiperiodic one.

In this research, our dynamic model, the saturable
nonlinear NSE, is based on the static approximation.
Speaking in terms of physics, the conditions for such an
approximation to be valid are that the macroscopic
length scale L must be much larger than the Debye
length, macroscopic velocities must be small compared
with the sound speed c¢;, and macroscopic time scales
must be long compared with L /¢, [3]. One should con-
sider the light velocity to be far larger than the acoustic
velocity. In fact, the response of density to the light fields
is only exhibited by the nonlinear force (ponderomotive
force), which corresponds to the exponential nonlinear
term in Eq. (1.3). From the current investigation, we un-
derstand that such a response would lead to the stochas-
tic propagation of light beams. On the other hand, this
model has been assumed, where, for a beam pulse length
much larger than the transverse spot size, the electron
density is determined by the balance of ponderomotive
force and electrostatic force only in the radial direction
[15].  Generally speaking, the simple case of
describing the light beam propagation is considered
to be the axisymmetric cylindrical coordinates with
V,=(1/r)d/3r)r(d/3r), where r is the radial variable of
laser spot. Here we only deal with the case where the
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transverse spot consists of one variable x, which is obvi-
ously different from the real physical picture. Taking
more generally physical and mathematical applications
into account, however, we think that the current work is
still of significance for our understanding of the propaga-
tive behavior of the light wave.

If we consider that the z variable in model (1.4) is
equivalent to the evolutive time ¢, obviously this work ex-
hibits the spatiotemporally chaotic dynamics of fields in
the continuum Hamiltonian dynamic system, which still
remains open because of the complexity of the system in
the infinite degree of freedom. On the other hand, the
dynamic model (1.4) can also describe the developed pro-
cess of Langmuir turbulence when the variable z is re-
placed by the time variable ¢ [16]. In the approximation
of the weak or cubic nonlinearity, the formation of the
coherent structures (solitons) can be well explained in
terms of the modulational instability. But, the saturable
nonlinearity has to be considered in the evolutive latter
stage of plasma instability with the increase of field inten-
sity. Our investigation also shows that the high order
Hamiltonian perturbation may drive the formation of the
pattern dynamics for Langmuir fields.

At last, we should mention the main difference between
our work and those works that discuss the spatiotem-
porally complicated patterns for NSE. Until fairly re-
cently, one studied the NSE with the driven damping,
force dissipation, or nonlinear inhomogeneous media
[17,18]). A rich variety of complicated patterns, which
suggested that a low-dimensional chaotic attractor exist-
ed in an infinite-dimensional system, were observed. For
the continuum Hamiltonian system, however, the prob-
lem becomes extremely difficult for the generally initial
conditions since the system cannot be reduced to a finite-
dimensional one, such as that found in the case of the dis-
sipative perturbation, though the existence of the solitary
waves could slow down the dimensions of the system. In
addition, Akhmediev et al. only discussed the pseudore-
currence in the two-dimensional modulational instability
[19], and our previous work [8] on the chaotic dynamics
for the cubic-quintic NSE only described the chaotic tra-
jectories in phase space. Here, we refer to a better
description of the complicated patterns in a continuum
Hamiltonian system.
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FIG. 4. (a) Phase trajectories illustrate the irregular HMO
crossings. (b) Propagation of the field amplitude. (c) Continu-
ous power spectrum shows the chaotic characteristic.



